

Making Better Cyber and Technology Risk Decisions: Part 2

Jack Jones Chairman FAIR Institute

You have two security-related findings...

An audit discovered that privileges are not consistently being updated for user accounts with access to a customer service application containing PII. A security assessment determined that the organization was unlikely to be able to identify when a cyber criminal breaches its network perimeter.

Which of them is more important to fix first?

A review: Two fundamental truths about prioritization

Prioritization is always based on some form of comparison

Comparisons are always based on some form of measurement

© 2020 FAIR Institute All rights reserved

Three criteria for reliable risk measurement...

- 1. Clarity about what's being measured
- 2. An accurate risk model
- 3. Data

Had you clearly defined in your own mind what you just measured? What model did you use? What data did you use?

Inappropriate Access Privileges

- What is the asset at risk? Customer information
- Who/what is the threat actor(s)? Personnel with inappropriate access
- What type of action Malicious
- What type of event is it (C, I, or A)? Confidentiality
- What is the loss event scenario? The confidentiality of customer data is maliciously compromised by personnel with inappropriate access

Using NIST 800-30

© 2020 FAIR Institute All rights reserved

Step 1: "Likelihood of Threat Event Initiation"

In FAIR this is referred to as "Threat Event Frequency"

TABLE G-2: ASSESSMENT SCALE – LIKELIHOOD OF THREAT EVENT INITIATION (ADVERSARIAL)

Qualitative Values	Semi-Quantitative Values		Description	
Very High	96-100	10	Adversary is almost certain to initiate the threat event.	
High	80-95	8	Adversary is highly likely to initiate the threat event.	
Moderate	21-79	5	Adversary is somewhat likely to initiate the treat event.	
Low	5-20	2	Adversary is unlikely to initiate the threat event.	
Very Low	0-4	0	Adversary is highly unlikely to initiate the threat event.	

Step 2: Likelihood of Threat Event Resulting in Adverse Impacts

In FAIR this is referred to as "Vulnerability"

TABLE G-4: ASSESSMENT SCALE – LIKELIHOOD OF THREAT EVENT RESULTING IN ADVERSE IMPACTS

Qualitative Values	Semi-Quantitative Values		Description
Very High	96-100	10	If the threat event is initiated or occurs, it is almost certain to have adverse impacts.
High	80-95	8	If the threat event is initiated or occurs, it is highly likely to have adverse impacts.
Moderate	21-79	5	If the threat event is initiated or occurs, it is somewhat likely to have adverse impacts.
Low	5-20	2	If the threat event is initiated or occurs, it is unlikely to have adverse impacts.
Very Low	0-4	0	If the threat event is initiated or occurs, it is highly unlikely to have adverse impacts.

Step 3: Overall Likelihood

In FAIR this is referred to as "Loss Event Frequency"

Likelihood of Threat Event	Likelihood Threat Events Result in Adverse Impacts					
Occurrence	Very Low	Low	Moderate	High	Very High	
Very High	Low	Moderate	High	Very High	Very High	
High	Low	Moderate	Moderate	High	Very High	
Moderate	Low	Low	Moderate	Moderate	High	
Low	Very Low	Low	Low	Moderate	Moderate	
Very Low	Very Low	Very Low	Low	Low	Low	

TABLE G-5: ASSESSMENT SCALE – OVERALL LIKELIHOOD

Step 4: Estimating impact

	TABLE H-3: ASSESSMENT SCALE – IMPACT OF THREAT EVENTS
Very High	Multiple severe or catastrophic adverse effects on the organization's assets or individuals
High	A severe or catastrophic adverse effect on the organization's assets or individuals
Moderate	Serious adverse effect on the organization's assets or individuals
Low	Limited adverse effect on the organization's assets or individuals
Very Low	Negligible adverse effect on the organization's assets or individuals
	Very Low 0-4 0 operations, organizational assets, individuals other organizations, or the Nation.

TABLE I-2: ASSESSMENT SCALE - LEVEL OF RISK (COMBINATION OF LIKELIHOOD AND IMPACT)

Likelihood (Threat Event Occurs	Level of Impact				
and Results in Adverse Impact)	Very Low	Low	Moderate	High	Very High
Very High	Very Low	Low	Moderate	High	Very High
High	Very Low	Low	Moderate	High	Very High
Moderate	Very Low	Low	Moderate	Moderate	High
Low	Very Low	Low	Low	Low	Moderate
Very Low	Very Low	Very Low	Very Low	Low	Low

Using FAIR

© 2020 FAIR Institute All rights reserved

Threat Event Frequency

Definition

The probable frequency, within a given timeframe, that a threat will act in a manner that may result in loss

• Estimates

Qualitative: Low Min: .05 yr (1 in 20 yr) Max: 5 yr (Logging!) ML: .1 yr (1 in 10 yr)

• Data/Rationale

- 30 user accounts (out of 200) with inappropriate access levels (15%)
- HR records show 2 events of misuse in the past 3 yrs ("snooping")
- Snooping was performed by personnel <u>with</u> <u>appropriate access</u>
- No history of malicious misuse

Vulnerability

Definition ightarrow

> The probability that a threat event will become a loss event

Estimates

Qualitative: Very High 100%

These are privileged insiders who don't have to overcome controls in order to execute the illicit action

Primary Loss Magnitude

Definition

Loss that occurs <u>directly</u> as a result of the threat act against the asset.

Estimates

Qualitative: Moderate Min: \$25k Max: \$150k ML: \$40k

- Data/Rationale
- Forensic/investigative costs
- Costs associated with replacing the malicious employee

Secondary Loss Event Frequency

Definition

The probability of secondary loss (fallout)

Estimates

Qualitative: Very High 100%

• Data/Rationale

Assumes that any compromise of customer information would require notification and other secondary costs

Secondary Loss Magnitude

Definition

The probable loss magnitude resulting from fallout

• Estimates

Qualitative: Moderate Min: \$100 Max: \$500k ML: \$17k

- Data/Rationale
 - Minimum of 1 customer record
 - Most Likely 20 customer records
 - Max 100 records (only accessible one at a time)
- Includes notification costs, credit monitoring, legal defense, and customer churn

Deriving risk

Deriving risk

https://app.fairu.net

© 2020 FAIR Institute All rights reserved

Deriving risk

https://app.fairu.net

© 2020 FAIR Institute All rights reserved

Weak Intrusion Detection

- What is the asset at risk? Customer information
- Who/what is the threat actor(s)? Cyber criminals
- What type of action Malicious
- What type of event is it (C, I, or A)? Confidentiality
- What is the loss event scenario? T

The confidentiality of customer data is maliciously compromised by cyber criminals who are able to breach the perimeter.

Threat Event Frequency

Definition

The probable frequency, within a given timeframe, that a threat will act in a manner that may result in loss

- Estimates
 - Min: .1 yr (1 in 10 yr) Max: 5 yr ML: .2 yr (every other year)

Data/Rationale

Based on SME estimates as well as on data from compromised systems at the perimeter that have evidence of attempts to move deeper and laterally within the network.

Vulnerability

Definition

The probability that a threat event will become a loss event

Estimates

Min: 75% Max: 99% ML: 95%

Breaching the perimeter typically involves gaining (or positions the threat actor to gain) access to legitimate accounts, which makes it much more likely that internal resistive controls will be ineffective.

Primary Loss Magnitude

Definition

Loss that occurs <u>directly</u> as a result of the threat act against the asset.

• Estimates

Min: \$ 50k Max: \$ 500k ML: \$ 100k

- Data/Rationale
- Internal personnel response efforts
- Outsourced forensic/investigative costs

Secondary Loss Event Frequency

Definition

The probability of secondary loss (fallout)

Estimates

100%

• Data/Rationale

Assumes that without early detection the threat actor will eventually compromise some amount of customer information, which would require notification and other secondary costs.

Secondary Loss Magnitude

Definition

The probable loss magnitude resulting from fallout

Estimates

Min: \$5k Max: \$100M ML: \$1M

- Data/Rationale
- Minimum of 1 customer record
- Most Likely 1M customer records
- Max all customer records
- Includes notification costs, credit monitoring, legal defense, and customer churn

Inappropriate Access Privileges

Weak Intrusion Detection

\$0	\$15.0M	\$233.4M
Minimum	Average	Maximum

The solutions required for improving this situation were expected to cost approximately \$750k in year one, and an additional \$300k to \$500k annually thereafter.

Is the investment worth it?

What changes with strong detection?

- Loss Event Frequency doesn't change
- Loss Magnitude changes:
 - Primary loss goes down because of earlier detection and simpler forensics.
 - Secondary LEF goes down because there are better odds of intervening before customer data is compromised.
 - Secondary LM goes down because the threat actor is less likely to have time to find the mother load.
- Only the Most Likely (ML) values change (not Min or Max)!

Cost-benefit analysis results

Before

After

© 2020 FAIR Institute All rights reserved

Wrapping up

Making better cyber and technology risk decisions

- Decisions are always based on priorities.
- Prioritization is always based on comparisons, which are based on measurements.
- Three fundamental requirements for reliable risk measurements:
 - Clarity: You can't reliably measure what you haven't clearly defined
 - An accurate model: All models are imperfect but some are fundamentally broken
 - Data: Data will always have uncertainty. The key is to faithfully account for and communicate uncertainty.
- How effectively we apply our limited risk management resources boils down to how well we're able to measure risk.
- FAIR enables better risk measurement.

