

Making Better Cyber and Technology Risk Decisions: Part 1

Jack Jones Chairman FAIR Institute

The risk landscape in a nutshell...

Complex

Dynamic

Limited Resources

Makes effective prioritization an absolute necessity.

The importance of being cost-effective

Decisions Prioritization and solution choices.

How much do they really understand?

CISO

Δεν γνωρίζουμε πόσο μεγάλο είναι ο κίνδυνος που έχουμε.

Two fundamental truths about prioritization...

Prioritization is always based on some form of comparison

Comparisons are always based on some form of measurement

The more normalized the measurement, the better comparisons and priorities will be.

Prioritizing Effectively

- 1. Clarity about what's being measured
- 2. An accurate risk model
- 3. Data

Getting clarity

Which of the following are risks?

- Disgruntled insiders
- Reputation
- Untested recovery process
- Network shares containing sensitive consumer information
- Weak passwords
- Cyber criminals

- Disgruntled insiders Threat community
- Reputation Asset
- Untested recovery process Deficient control
- Network shares containing sensitive consumer information Assets
- Weak passwords Deficient control
- Cyber criminals Threat community

The classic formula for risk

Risk = Likelihood x Impact

Likelihood and Impact of what?

Loss Event Scenarios

These aren't loss events

- Disgruntled insiders
- Reputation
- Untested recovery process
- Network shares containing sensitive consumer information
- Weak passwords
- Cyber criminals

You can only assign likelihood and impact to <u>loss event scenarios</u>.

A measurement example

How fast are they going? Qualitatively

- Is your "Fast" the same as mine?
- Which car am I referring to?
 - One in particular? (Slowest? Fastest?)
 - An average for all of them?
- Which part of the track am I referring to?
 - Corners?
 - The straightaway?
 - Average over the entire track?
 - This lap, or an average for the entire race?

Measuring speed

Requires three elements:

- 1. The scope of what's being measured
 - Which car(s)?
 - Which part of the track?
 - Which lap(s)?

2. An analytic model

- What data? (time, distance)
- How to apply the data? (speed = distance/time).

3. Data

Every risk measurement involves three elements:

- 1. The scope of what's being measured
 - What asset?
 - What threat?
 - Which vector?
 - Which controls are relevant?
 - What type of event (e.g., C, I, A)?
- 2. An analytic model (e.g., FAIR)
 - What data?
 - How to apply the data?

3. Data

Without clear scoping, the odds of measuring risk accurately are much lower...

...regardless of whether you're doing qualitative or quantitative measurement

A model is a <u>simplified representation</u> of reality used to simulate, explain, and make predictions.

"All models are wrong, but some are useful." George Box

But there are different types and degrees of "wrongness"...

"Wrong" models...

Wrong, in that they aren't perfect replicas.

A different kind of wrong...

A broken risk model (half of one, anyway)

		Ov					
Likelihood Of An Attack	Very High	Low	Moderate	High	Very High	Very High	
	High	Low	Moderate	Moderate	High	Very High	
	50%	Low	Low	Moderate	Moderate	?	
	Low	Very Low	Low	Low	Moderate	Mode	rate
	Very Low	Very Low	Very Low	Low	Low	Lo	W
		Very Low	Low	Moderate	High	100%	

Table G-5 NIST 800-30

Likelihood Of Attack Success

What is the most commonly used cyber risk measurement model?

Mental models

What assumptions?

What data?

What formula?

The FAIR Model

Loss Event Frequency

Loss Magnitude

But what about data?

"We don't have enough data."

- "You have more data than you think you do."
- "You need less data than you think you do."

Douglas Hubbard Author of "How to Measure Anything"

• What data do we need?

The risk model tells us this

- Where do we get them?
- How do we apply them?

The scope tells us this

The model tells us this

If the analysis is scoped clearly and you're using a well-defined model, then data will be far less challenging to gather and use.

The problem of uncertainty...

How tall am I?

Uncertainty is inevitable. It's simply a matter of whether it's accounted for in measurement inputs and outputs.

Communicating Effectively

- A marketing campaign that is expected to generate \$1M to \$2.5M in additional revenue over the next 12 months.
- A cost-cutting initiative that will trim approximately \$1.3M in expenses this year.
- A cybersecurity initiative that will enable early detection of breaches, improving this from "High risk" to "Medium risk".

- A marketing campaign that is expected to generate \$1M to \$2.5M in additional revenue over the next 12 months.
- A cost-cutting initiative that will trim approximately \$1.3M in expenses this year.
- A cybersecurity initiative that will enable early detection of breaches, reducing loss exposure by approximately \$10M.

Prioritizing amongst risks qualitatively

Risk Statement	Likelihood	Impact	Velocity	Score
IT projects not managed in terms of budget, scheduling, scope, priority, and delivery	3	3	3	
No process for identifying and allocating costs attributable to IT services	3			
Failure to make adequate plans for continuation of institutional business processes (e.g., admissions, academic, operational activities, and research) in the event of an extended IT outage	3			
No coordinated vetting and review process for third-party or cloud- computing services used to store, process, or transmit institutional data	3			
Failure to designate leadership (e.g., an individual or individuals) for institutional oversight and strategic direction for information security activities	2	3	3	18
No succession plan for key institutional IT leaders (e.g., CIO, CISO, CTO, CPO, etc.)	3	3	2	18
Incorrect information on public-facing institutional resources (e.g., website, social media streams)	3	2	3	18
IT management aims and directions not communicated to critical user areas	3	2	2	12
No process for managing IT problems to ensure they are adequately resolved or for investigating causes to prevent recurrence	2	2	3	12
Failure to designate leadership (e.g., an individual or individuals) for institutional oversight and strategic direction for IT operations	1	3	3	9
Relevant stakeholders not included in important IT investment decisions (e.g., priorities, technologies, new applications)	2	2	2	8
No process for measuring and managing IT performance	2	2	2	8
IT governance and priorities not aligned with institutional priorities	3	2	1	6
IT assets (e.g., hardware, devices, data, and software), systems, and services outdated, do not support institutional needs (admissions, academic, business operations, research, etc.)	3	2	1	6
Lack of shared understanding by IT and business units that affects IT service delivery and projects	3	2	1	6
IT assets (e.g., hardware, devices, data, and software) and systems not prioritized based on their classification, critically, and institutional value	3	1	1	3

Prioritizing amongst risks quantitatively

Top Risks Report

\$59.4M	Most Expensive Event		24.46%	Highes Exce	et Probability to		\$3	0.3M	Top Ann Risk	nualized	
Top Risks - 90th % Per Event Loss Magnitude			Top Risks - Probability of Annualized Loss Exceeding \$1M			Top Risks - 90th % Annualized Loss Exposure					
Data Warehouse - PII - External Act	or	\$59.4M	Corporate Email - PI	- Error - Confid		24.46%	Data War	ehouse - PII - External /	Actor		\$30.3M
Internet Facing App - External Acto	or	\$11.9M	Internet Facing App -	External Actor		19.94%	Internet	Facing App - External A	ctor		\$8M
Core Financial System - PI - Error		\$7.9M	Data Warehouse - PII	- External Actor		11.46%	Corpora	te Email - PI - Error - C	onfid		\$1.8M
Workstations - External Actor - Malw	va	\$2M	Workstations - Externa	al Actor - Malwa		6.63%	Workstati	ons - External Actor - M	alwa		\$582.6K
Key Financial Platform - External A	ct	\$1.9M	Unstructured Data - E	xternal Actors	_	2.94%	Core Fir	nancial System - PI - En	or		\$375.4K
Report Options										Upda	ate Report
Risk Threshold Vie \$1,000,000	5 of 10 Report By 10th % Minimu	Most Likel	y 💿 90th %	Filter Options	to charts						
Scenario Details											
Scenario T	Asset T	Threat T	Threat Type T	Loss Effect	Minimum	10th %	Most Likely	Average	90th % -	Maximum	State
Data Warehouse - PII - External Actors - ConfidDatabase External Actor		External Actor(s)	Malicious	Loss of Confidentiality	\$0	\$0	\$0	\$5M	\$30.3M	\$95.1M	P
Internet Facing App - External Actor - Confi	dentApplication	External Actor(s)	Malicious	Loss of Confidentiality	\$0	\$0	\$0	\$1.7M	\$8M	\$22.3M	0
Corporate Email - PI - Error - Confidentiality	y O365 Microsoft Exchange	Privileged Insider(s)	Error	Loss of Confidentiality	\$5.5K	\$15.5K	\$19K	\$685.3K	\$1.8M	\$9.9M	D

36 (c) 2020 RiskLens, Inc. Used with permission

Cost-benefit comparisons

Remember this?

Wrapping up

Contributing to every breach...

Poor prioritization, wasted resources and ineffective communication

Making better cyber and technology risk decisions

- Three fundamental requirements for reliable risk measurements:
 - Clarity: You can't reliably measure what you haven't clearly defined
 - An accurate model: All models are imperfect but some are fundamentally broken
 - Data: Data will always have uncertainty. The key is to faithfully account for and communicate uncertainty.
- Decisions are always based on priorities.
- Prioritization is always based on comparisons, which are based on measurements.
- If we want risk to be on an even playing field with other organization priorities, we have to measure and communicate risk in financial terms.

...I'll walk thru an example analysis comparing and contrasting common qualitative practice vs. a quantitative approach.

